Measurable flows and perfect matchings in hyperfinite graphings

Matt Bowen

McGill University

October 31, 2021

.

Graphings

Fix X a Polish space with borel probability measure μ and G a graph with V(G) = X.

- G is a Borel graph if E(G) is a Borel subset of X^2 .
- G is probability measure preserving (pmp) if $\mu(A) = \mu(f(A))$ whenever $A \subseteq X$ is borel and f is a G-invariant borel injection.
- G is locally finite if $d(x) < \infty$ for every $x \in V(G)$.
- G is a graphing if it satisfies all of the above.

Hyperfinite graphings

G is (μ) hyperfinite if there is an increasing sequence G_n of induced borel subgraphs of G with finite connected components such that G $(\mu \text{ a.e.})$

Hyperfinite graphings

G is (μ) hyperfinite if there is an increasing sequence G_n of induced borel subgraphs of *G* with finite connected components such that $\bigcup V(G_n) = V(G)$ (μ a.e.)

• The Schreier graph of any free pmp action of an amenable group is μ -hyperfinite.

Hyperfinite graphings

G is (μ) hyperfinite if there is an increasing sequence G_n of induced borel subgraphs of *G* with finite connected components such that $\bigcup V(G_n) = V(G)$ (μ a.e.)

- The Schreier graph of any free pmp action of an amenable group is μ hyperfinite.
- pmp hyperfinite trees have at most two ends a.e., so the Schreier graph of a free pmp action of F_d is never μ -hyperfinite.

Matchings and applications

 $M \subseteq E(G)$ is a *matching* if no two edges in M are incident on the same vertex.

Matchings and applications

 $M \subseteq E(G)$ is a *matching* if no two edges in M are incident on the same vertex.

Given an (usually pmp) action of Γ , we say A, B are Γ -equidecomposable if there is a partition $A = \bigcup_{i=1}^{n} A_i$ with $B = \bigcup_{i=1}^{n} \gamma_i A_i$ for some $\gamma_i \in \Gamma$

- (Banach-Tarski): The sphere is E(3)-equidecomposable with two spheres
- (Laczkovich): The unit circle is $\mathbb{Z}^2\text{-equidecomposable}$ with the unit square

Matchings and applications

 $M \subseteq E(G)$ is a *matching* if no two edges in M are incident on the same vertex.

Given an (usually pmp) action of Γ , we say A, B are Γ -equidecomposable if there is a partition $A = \bigcup_{i=1}^{n} A_i$ with $B = \bigcup_{i=1}^{n} \gamma_i A_i$ for some $\gamma_i \in \Gamma$

- (Banach-Tarski): The sphere is *E*(3)-equidecomposable with two spheres
- \bullet (Laczkovich): The unit circle is $\mathbb{Z}^2\text{-equidecomposable}$ with the unit square

Given $A, B \subseteq X$ and $S \subseteq F, G = G(A, B, S)$ is the graph with $V(G) = A \cup B$, and aGb iff as = b for some $s \in S$.

 $M \subseteq E(G)$ is a *matching* if no two edges in M are incident on the same vertex.

Given an (usually pmp) action of Γ , we say A, B are Γ -equidecomposable if there is a partition $A = \bigcup_{i=1}^{n} A_i$ with $B = \bigcup_{i=1}^{n} \gamma_i A_i$ for some $\gamma_i \in \Gamma$

- (Banach-Tarski): The sphere is <u>*E*(3)</u>-equidecomposable with two spheres
- (Laczkovich): The unit circle is \mathbb{Z}^2 -equidecomposable with the unit square

Given $A, B \subseteq X$ and $S \subseteq \Gamma$, G = G(A, B, S) is the graph with $V(G) = A \cup B$, and *aGb* iff as = b for some $s \in S$.

A and B are Γ -equidecomposable iff G(A, B, S) admits a perfect matching for some finite $S \subset \Gamma$.

Graphs without measurable matchings

Banach-Tarki gives an example of a borel graphing with a perfect matching but no measurable perfect matching.

Graphs without measurable matchings

A-TX-+

Banach-Tarki gives an example of a borel graphing with a perfect matching but no measurable perfect matching.

(Essentially Laczkovich): Any free, weakly mixing ZLaction has a perfect matching but no measurable perfect matching

Graphs without measurable matchings

Banach-Tarki gives an example of a borel graphing with a perfect matching but no measurable perfect matching.

(Essentially Laczkovich): Any free, weakly mixing Z-action has a perfect matching but no measurable perfect matching.

There are bipartite hyperfinite one-ended graphings with perfect matchings but no measurable perfect matching:

Theorem (B., Kun, Sabok)

Suppose that G is a bipartite graph, and the set of G edges that appear in some perfect matching induces a one-ended hyperfinite graphing. Then G admits a measurable perfect matching a.e.

Theorem (B., Kun, Sabok)

Suppose that G is a bipartite graph, and the set of G edges that appear in some perfect matching induces a one-ended hyperfinite graphing. Then G admits a measurable perfect matching a.e.

- Any *d*-regular, bipartite one-ended hyperfinite graphing admits a measurable perfect matching
- Any <u>bipartite Schreier graph</u> of a free pmp action of a one-ended amenable group admits a measurable perfect matching

flows

Given $f: V(G) \to \mathbb{Z}$, an *f*-flow is a function $\phi: \vec{E}(G) \to \mathbb{R}$ if $\phi(x, y) \models -\phi(y, x)$ and $\underline{f(x)} = \sum_{y \in N(x)} \phi(x, y)$. ϕ has capacity bounded by *c* if $\phi(x, y) \le c(x, y)$. Given a bipartite graph G = (A, B, E) let $\underline{f(A)} = 1, \underline{f(B)} = -1$, and $c(a, b) \le 1$ and $c(b, a) \le 0$. Then *G* admits a perfect matching iff *G* admits an *integral f*-flow with capacity bounded by *c*.

Its an Integral 7-flow with capacity bound

Theorem (BKS)

Any one-ended hyperfinite graphing that admits an f-flow with capacity bounded by c admits a measurable integral f-flow with capacity bounded by c + 3.

Theorem (BKS)

Any one-ended hyperfinite graphing that admits an f-flow with capacity bounded by c admits a measurable integral f-flow with capacity bounded by c + 3.

- This implies that if Γ is a one-ended amenable group and A, B ⊂ X are "Γ-uniform" and Γ-equidecomposable, then they are equidecomposable using measurable pieces
- Cieśla and Sabok showed that hyperfinite graphings admit an *f*-flow with capacity *c* iff they admit a measurable *f*-flow with capacity *c*.

Definition

Given a graphing G, we say that a Borel collection \mathcal{T} of finite connected subsets of V(G) is a *one-ended tree tiling* if $\mathcal{T} \subseteq V(G)^{<\omega}$ satisfies

$$\bigcup_{K\in\mathcal{T}}E(K)=E(G),$$

• for every pair K, L ∈ T either K ∩ L = Ø, or K ∪ N(K) ⊆ L, or
 L ∪ N(L) ⊆ K,

• for every $\underline{K} \in \underline{\mathcal{T}}$ the induced subgraph on $K \setminus \bigcup_{K \supseteq L \in \underline{\mathcal{T}}} L$ is connected.

the proof part 2: more pictures

Given an oreinted cycle, an *e-circuit* sends *e* flow along the cycle
A rational is dyadic if its denominator is 20 for some *n*

sketch of main theorem part 1

Let ϕ be a flow with a one-ended set of free edges

- Round along cycles until the graph is essentially acyclic
- Since G is hyperfinite, pmp, and no vertex can see only 1 non-integral edge we're left with bi-infinite lines to round
- if the flow value along these lines isn't $\frac{1}{2}/\frac{-1}{2}$ then we can select an end and round towards it

sketch of main theorem part 2

- Given flow ψ -as in last slide, let $L(\psi) = \{e : \psi(e) \in \{\frac{1}{2}, \frac{-1}{2}\}$
- We want to find a ψ' with

$$\int_{\vec{e}\notin L(\psi)} |\psi'(\vec{e}) - \psi(\vec{e})| < \underbrace{\frac{1}{2} \int_{\vec{e}\in L(\psi)} |\psi'(\vec{e}) - \psi(\vec{e})|}_{\vec{e}\notin L(\psi)}$$

sketch of main theorem part 2

- Given flow ψ as in last slide, let $L(\psi) = \{e : \psi(e) \in \{\frac{1}{2}, \frac{-1}{2}\}$
- We want to find a ψ' with

$$\int_{\vec{e} \notin L(\psi)} |\psi'(\vec{e}) - \psi(\vec{e})| < \frac{1}{2} \int_{\vec{e} \in L(\psi)} |\psi'(\vec{e}) - \psi(\vec{e})|$$

- Consider $(1 \lambda)\psi + \lambda\phi$ for λ small
- Find borel family of cycles that cover half of the e ∈ L(ψ) k times and edges not in L(ψ) at most once (uses the one-ended tree tiling)
- adding randomly oriented $\epsilon\text{-circuits}$ and using Berry-Esseen gives the desired ψ'